Construction Tie Products, Inc. is committed to supplying the highest quality masonry tie and construction systems in North America and satisfying all stringent national codes and standards for today’s building structures. CTP, Inc. promises to be a reliable product source along with on-time business integrity for all demanding builders. Call anytime for technical assistance or recommendations.

Secure Existing Brick and Stone Veneers Safely, Efficiently Without Exposed Hardware

CTP GRIP-TIE

We help you get a grip on your façade problems quick and easy!

Usage Shown Here Re-Anchor Brick Façade to Typical Wood or Metal Stud Back-Up

Re-Attach Existing Brick Veneers with Certainty and Security

• Add high strength mechanical anchors to an existing brick façade to fortify and stabilize against external forces
• No exposed hardware
• Delivers 100% performance expectations due to its positive torque gripping activation
• No chemicals or disturbing hammering activity
• An excellent solution to re-anchor a masonry or stone façade to metal or wood stud, structural steel, tile, block, concrete, and brick

Made in the U.S.A.
CTP Grip-Tie
Mechanical Repair Anchors for Stabilizing Existing Façades

Product Line Description
Typically, masonry façades are intended to resist wind loads. In lieu of tear down or replacement, an existing masonry or terra cotta façade can be fortified by the addition of mechanical ties or anchors. The CTP Grip-Tie anchors provide additional façade stability which may be needed to fulfill a myriad of requirements. The CTP Grip-Tie selection process evolves by evaluating the type of anchors one can use to satisfy the repair (compatibility) and strengthening criteria. Also, one cannot ignore the means and methods of installation which can also influence the remedial anchor choice.

Post installed CTP Grip-Tie repair anchors are available to accomplish the task. When dealing with a repair situation, the as built material quality and current building conditions are often unknown. It is therefore not uncommon that installation criteria and performance qualification be obtained via field tests in order to confirm design assumptions. The CTP Grip-Tie mechanical repair anchors consist of a dual expansion anchor for a mechanical connection that grips the back-up and veneer which is then bridged with an anchor rod. The CTP Grip-Tie anchor creates formidable gripping strength to the base material to which it is attached. The anchor does not draw walls together, thereby eliminating additional tension stresses between wythes of material. The back-up material can be concrete, metal stud, wood stud, CMU (hollow or grouted), structural steel, or brick. The veneer can be brick, stone, or precast. The CTP Grip-Tie anchor assembly is manufactured from corrosion resistant materials which will contribute to the façade’s long term durability and design life. The CTP Grip-Tie anchorage system has been designed to accommodate easy installation via hand tools or power tools. Combining the strength, generous spacing, and affordable installation technique, the CTP Grip-Tie mechanical repair anchor product line is a value reward choice for façade re-anchoring.

CTP Grip-Tie Selection Guide
The following application descriptions will provide a quick CTP Grip-Tie Repair Anchor Guideline when determining the appropriate series tie for veneers greater than 3” thick:
• The solid back-up conditions – refer to the CTP 5000 or CTP 5000R Series Anchors
• The hollow back-up conditions – refer to the CTP 5100 Series Anchors
• The structural steel back-up conditions – refer to the CTP 5200 Series Anchors
• The stud (wood or steel) back-up conditions – refer to the CTP 5300 Series Anchors

Anchor Spacing
It is recommended to first check with local building codes for spacing condition requirements for proper masonry tie spacing. Typically, the CTP Grip-Tie is spaced at one tie per four square feet of veneer for masonry or concrete back-up conditions. For metal or wood stud back-up, a 16” horizontal by 24” vertical is common spacing. Consult with local design professionals to establish wind load criteria for all scenarios.

Performance
Each construction site is unique and the appropriate use of this product is the responsibility of the engineers, architects, and other professionals who are familiar with the specific requirements of the project. The data reflects results of lab, field and in-house tests and are provided as a guideline for the designer. Site testing is encouraged for verification of load capacity.
The CTP Grip-Tie Advantage

Mechanical Grip
Brass Shield Expanders for Flexible and Durable Gripping Action

Durable Materials
Every Component of the CTP Grip-Tie Anchor Assembly is Manufactured of Corrosion Resistant Materials

Engineered Shaft Design
A Stainless Steel Connector for the Back-Up and Veneer Anchorage that Provides for Flexibility During Thermal Cycles and Strength to Resist Live Loads

Stabilizing Grip
The Design of the Anchor Prevents Drawing the Wythes of Material Together Which Prevents Additional Lateral Stresses

Typical Applications

Make It Strong Again!
Brick Veneer Cavity Walls With:
- Insufficient Ties
- Corroded Ties
- Concrete Back-Up
- Metal Stud Back-Up
- Wind-Load Fortification

Multi-Tasked!
- Composite Walls Where Header Brick Have Failed
- Soft Brick or Mortar
- Deep Reaching Multi-Wythe Connections

Tough Problems Solved!
- Peripheral Areas Around Bulges in Walls or Areas to be Removed

We Make It Easy!
Non-Brick Façades Such As:
- Limestone
- Granite
- Precast
CTP Grip-Tie Tension Capacities With Various Back-Up Material

<table>
<thead>
<tr>
<th>Back-Up Material</th>
<th>CTP Anchor Series</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ultimate Tension Capacity (lbs)</td>
<td></td>
</tr>
<tr>
<td>METAL STUD</td>
<td>WOOD</td>
</tr>
<tr>
<td>16 Gauge</td>
<td>18 Gauge</td>
</tr>
<tr>
<td>835</td>
<td>500</td>
</tr>
<tr>
<td>835</td>
<td>500</td>
</tr>
</tbody>
</table>

Typical CTP Grip-Tie Shaft Properties

Ultimate Shaft Buckling Strength

<table>
<thead>
<tr>
<th>SHAFT LENGTH (in)</th>
<th>CAPACITY (lb)</th>
</tr>
</thead>
<tbody>
<tr>
<td>5 1/2</td>
<td>1620</td>
</tr>
<tr>
<td>6 1/2</td>
<td>1425</td>
</tr>
<tr>
<td>9 1/2</td>
<td>1100</td>
</tr>
<tr>
<td>11 1/2</td>
<td>725</td>
</tr>
</tbody>
</table>

CTP Grip-Tie Tension Capacities With Various Back-Up Material

<table>
<thead>
<tr>
<th>Back-Up Material</th>
<th>CTP Anchor Series</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ultimate Tension Capacity (lbs)</td>
<td></td>
</tr>
<tr>
<td>METAL STUD</td>
<td>WOOD</td>
</tr>
<tr>
<td>16 Gauge</td>
<td>18 Gauge</td>
</tr>
<tr>
<td>835</td>
<td>500</td>
</tr>
<tr>
<td>835</td>
<td>500</td>
</tr>
</tbody>
</table>

Typical CTP Grip-Tie Shaft Properties

Ultimate Shaft Buckling Strength

<table>
<thead>
<tr>
<th>SHAFT LENGTH (in)</th>
<th>CAPACITY (lb)</th>
</tr>
</thead>
<tbody>
<tr>
<td>5 1/2</td>
<td>1620</td>
</tr>
<tr>
<td>6 1/2</td>
<td>1425</td>
</tr>
<tr>
<td>9 1/2</td>
<td>1100</td>
</tr>
<tr>
<td>11 1/2</td>
<td>725</td>
</tr>
</tbody>
</table>

CTP Grip-Tie Tension Capacities With Various Back-Up Material

<table>
<thead>
<tr>
<th>Back-Up Material</th>
<th>CTP Anchor Series</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ultimate Tension Capacity (lbs)</td>
<td></td>
</tr>
<tr>
<td>METAL STUD</td>
<td>WOOD</td>
</tr>
<tr>
<td>16 Gauge</td>
<td>18 Gauge</td>
</tr>
<tr>
<td>835</td>
<td>500</td>
</tr>
<tr>
<td>835</td>
<td>500</td>
</tr>
</tbody>
</table>

Typical CTP Grip-Tie Shaft Properties

Ultimate Shaft Buckling Strength

<table>
<thead>
<tr>
<th>SHAFT LENGTH (in)</th>
<th>CAPACITY (lb)</th>
</tr>
</thead>
<tbody>
<tr>
<td>5 1/2</td>
<td>1620</td>
</tr>
<tr>
<td>6 1/2</td>
<td>1425</td>
</tr>
<tr>
<td>9 1/2</td>
<td>1100</td>
</tr>
<tr>
<td>11 1/2</td>
<td>725</td>
</tr>
</tbody>
</table>

CTP Grip-Tie Tension Capacities With Various Back-Up Material

<table>
<thead>
<tr>
<th>Back-Up Material</th>
<th>CTP Anchor Series</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ultimate Tension Capacity (lbs)</td>
<td></td>
</tr>
<tr>
<td>METAL STUD</td>
<td>WOOD</td>
</tr>
<tr>
<td>16 Gauge</td>
<td>18 Gauge</td>
</tr>
<tr>
<td>835</td>
<td>500</td>
</tr>
<tr>
<td>835</td>
<td>500</td>
</tr>
</tbody>
</table>

Typical CTP Grip-Tie Shaft Properties

Ultimate Shaft Buckling Strength

<table>
<thead>
<tr>
<th>SHAFT LENGTH (in)</th>
<th>CAPACITY (lb)</th>
</tr>
</thead>
<tbody>
<tr>
<td>5 1/2</td>
<td>1620</td>
</tr>
<tr>
<td>6 1/2</td>
<td>1425</td>
</tr>
<tr>
<td>9 1/2</td>
<td>1100</td>
</tr>
<tr>
<td>11 1/2</td>
<td>725</td>
</tr>
</tbody>
</table>

CTP Grip-Tie Tension Capacities With Various Back-Up Material

<table>
<thead>
<tr>
<th>Back-Up Material</th>
<th>CTP Anchor Series</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ultimate Tension Capacity (lbs)</td>
<td></td>
</tr>
<tr>
<td>METAL STUD</td>
<td>WOOD</td>
</tr>
<tr>
<td>16 Gauge</td>
<td>18 Gauge</td>
</tr>
<tr>
<td>835</td>
<td>500</td>
</tr>
<tr>
<td>835</td>
<td>500</td>
</tr>
</tbody>
</table>

Typical CTP Grip-Tie Shaft Properties

Ultimate Shaft Buckling Strength

<table>
<thead>
<tr>
<th>SHAFT LENGTH (in)</th>
<th>CAPACITY (lb)</th>
</tr>
</thead>
<tbody>
<tr>
<td>5 1/2</td>
<td>1620</td>
</tr>
<tr>
<td>6 1/2</td>
<td>1425</td>
</tr>
<tr>
<td>9 1/2</td>
<td>1100</td>
</tr>
<tr>
<td>11 1/2</td>
<td>725</td>
</tr>
</tbody>
</table>

CTP Grip-Tie Tension Capacities With Various Back-Up Material

<table>
<thead>
<tr>
<th>Back-Up Material</th>
<th>CTP Anchor Series</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ultimate Tension Capacity (lbs)</td>
<td></td>
</tr>
<tr>
<td>METAL STUD</td>
<td>WOOD</td>
</tr>
<tr>
<td>16 Gauge</td>
<td>18 Gauge</td>
</tr>
<tr>
<td>835</td>
<td>500</td>
</tr>
<tr>
<td>835</td>
<td>500</td>
</tr>
</tbody>
</table>

Typical CTP Grip-Tie Shaft Properties

Ultimate Shaft Buckling Strength

<table>
<thead>
<tr>
<th>SHAFT LENGTH (in)</th>
<th>CAPACITY (lb)</th>
</tr>
</thead>
<tbody>
<tr>
<td>5 1/2</td>
<td>1620</td>
</tr>
<tr>
<td>6 1/2</td>
<td>1425</td>
</tr>
<tr>
<td>9 1/2</td>
<td>1100</td>
</tr>
<tr>
<td>11 1/2</td>
<td>725</td>
</tr>
</tbody>
</table>
CTP Anchor Series

<table>
<thead>
<tr>
<th>VENNER</th>
<th>3/8"</th>
<th>9/16"</th>
<th>1/2"</th>
</tr>
</thead>
<tbody>
<tr>
<td>CTP 5300 Series</td>
<td>CTP 5300R Series</td>
<td>CTP 5000 Series</td>
<td></td>
</tr>
<tr>
<td>CTP 5000R Series</td>
<td>CTP 5300 Series</td>
<td>CTP 5000 Series</td>
<td></td>
</tr>
<tr>
<td>CTP 5100 Series</td>
<td>CTP 5200 Series</td>
<td>CTP 5000 Series</td>
<td></td>
</tr>
<tr>
<td>CTP 5200 Series</td>
<td>CTP 5100 Series</td>
<td>CTP 5000 Series</td>
<td></td>
</tr>
</tbody>
</table>

CTP Grip-Tie Tension/Compression Capacities With Various Veneers

<table>
<thead>
<tr>
<th>Veneer Material</th>
<th>MORTAR JOINT</th>
<th>BRICK</th>
<th>PRECAST</th>
<th>LIMESTONE</th>
<th>GRANITE</th>
</tr>
</thead>
<tbody>
<tr>
<td>TENSION</td>
<td>TENSION</td>
<td>TENSION</td>
<td>TENSION</td>
<td>TENSION</td>
<td>TENSION</td>
</tr>
<tr>
<td>COMPRESSION</td>
<td>COMPRESSION</td>
<td>COMPRESSION</td>
<td>COMPRESSION</td>
<td>COMPRESSION</td>
<td>COMPRESSION</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Veneer Material</th>
<th>3/8"</th>
<th>9/16"</th>
<th>1/2"</th>
</tr>
</thead>
<tbody>
<tr>
<td>MORTAR JOINT</td>
<td>900</td>
<td>1200</td>
<td>1500</td>
</tr>
<tr>
<td>BRICK</td>
<td>800</td>
<td>1200</td>
<td>1500</td>
</tr>
<tr>
<td>PRECAST</td>
<td>800</td>
<td>1200</td>
<td>1500</td>
</tr>
<tr>
<td>LIMESTONE</td>
<td>900</td>
<td>1200</td>
<td>1500</td>
</tr>
<tr>
<td>GRANITE</td>
<td>800</td>
<td>1200</td>
<td>1500</td>
</tr>
</tbody>
</table>
CTP 5000 Series Anchor

FACE OF VENEER TO FACE OF BACK-UP (A)

1. Select proper anchor length based on face of veneer to face of back-up (dimension A).
2. Drill appropriate hole at “TEE” joint location (no impact) to depth “B”.
4. Assemble threaded portion of complete anchor assembly to the 501 setting tool. (Hex bolt on tool MUST be seated) thread shaft into tool until it stops.
5. Insert entire assembly into drilled hole until it bottoms, tighten 50 – 100 in-lbs, remove setting tool. (Loosen bolt head on tool while holding tool firmly, spin tool from anchor).
6. Slide socket and adaptor onto the square drive of the 501 Tool, and onto the 5/16 hex nut of the installed anchor, tighten 50-100 in-lbs.
7. Remove socket and plug hole.

INSTALLATION PROCEDURE AND CRITERIA FOR SOLID BACK-UP

- **CATALOG #**
 - CTP-5054R
 - CTP-5064R
 - CTP-5074R
 - CTP-5084R

- **Dimensions**
 - **CATALOG #**
 - CTP-5054: 4 – 6”
 - CTP-5064: 4 – 6”
 - CTP-5074: 4 – 7”
 - CTP-5084: 4 – 8”
 - **Dimensions**
 - **A**: 6 1/2”
 - **B**: 6 1/2”
 - **C**: 6 1/2”
 - **Other Lengths Available Upon Request**

CTP 5000R Series Anchor

FACE OF VENEER TO FACE OF BACK-UP (A)

1. Select proper anchor length based on face of veneer to face of back-up (dimension A).
2. Drill appropriate hole through mortar joint (no impact) to depth illustrated (C).
4. Fit threaded shaft, with expander assembly opposite, to the 501R setting tool. (Hex bolt on tool MUST be seated) thread shaft into tool until it stops; insert assembly into drilled hole until it bottoms; Tighten 50-100 in-lbs.
5. Remove tool by holding firmly and loosening the hex bolt, then spin tool off anchor shaft by hand.
6. Place outer brass shield over main body (slots facing outward) and slide over shaft until it stops against nut; Place slot of tapered cone onto the 501R tangs; Position tapered cone onto shaft and tighten 50-100 in-lbs.
7. Remove tool, patch hole.

INSTALLATION PROCEDURE AND CRITERIA FOR SOLID BACK-UP

- **CATALOG #**
 - CTP-5054R
 - CTP-5064R
 - CTP-5074R
 - CTP-5084R

- **Dimensions**
 - **CATALOG #**
 - CTP-5054R: 4 – 6”
 - CTP-5064R: 4 – 7”
 - CTP-5074R: 4 – 8”
 - CTP-5084R: 4 – 9”
 - **Dimensions**
 - **A**: 9 1/2”
 - **B**: 9 1/2”
 - **C**: 9 1/2”
 - **Other Lengths Available Upon Request**
Mechanical Repair Anchors for Stabilizing Veneers

Product Series of CTP Grip-Tie

CTP 5100 Series Anchor

Veneer ≥ 3”

NOMINAL ANCHOR LENGTH (B)

1. Select proper anchor length based on face of veneer to face of back-up (dimension A).
2. Drill 1/2” hole through “tee” joint (no impact) and a 3/8” hole in the back-up, at least 2” deep.
4. Assemble threaded portion of complete anchor assembly to the 501 setting tool. (Hex bolt on the setting tool MUST be seated), thread shaft into setting tool until it stops; insert assembly into drilled hole until it bottoms; tighten 50 – 100 in-lbs.
5. Remove tool by holding firmly and loosening the hex bolt, then spin tool off anchor shaft by hand.
6. Slide socket drive and adaptor onto the square drive of the 501 tool and on to the 5/16” nut of the installed anchor, tighten 50 – 100 in-lbs.
7. Remove socket, patch hole.

FACE OF VENEER TO FACE OF BACK-UP (A)

<table>
<thead>
<tr>
<th>CATALOG #</th>
<th>A</th>
<th>B</th>
</tr>
</thead>
<tbody>
<tr>
<td>CTP-5154</td>
<td>4 – 5”</td>
<td>5 1/2”</td>
</tr>
<tr>
<td>CTP-5164</td>
<td>5 – 6”</td>
<td>6 1/2”</td>
</tr>
<tr>
<td>CTP-5174</td>
<td>6 – 7”</td>
<td>7 1/2”</td>
</tr>
<tr>
<td>CTP-5184</td>
<td>7 – 8”</td>
<td>8 1/2”</td>
</tr>
</tbody>
</table>

OTHER LENGTHS AVAILABLE UPON REQUEST

CTP 5200 Series Anchor

Veneer ≥ 3”

NOMINAL ANCHOR LENGTH (B)

1. Select proper anchor length based on face of veneer to face of back-up (dimension A).
2. Drill 1/2” hole through mortar joint (no impact) and a 7/16” hole in the steel back-up.
4. Assemble threaded portion of complete anchor assembly to the 501 setting tool. (Hex bolt on the setting tool MUST be seated), thread shaft into setting tool until it stops; insert assembly into drilled hole until it bottoms; tighten 50 – 100 in-lbs.
5. Remove tool by holding firmly and loosening the hex bolt, then spin tool off anchor shaft by hand.
6. Slide socket drive and adaptor onto the square drive of the 501 tool and on to the 5/16” nut of the installed anchor, tighten 50 – 100 in-lbs.
7. Remove socket, patch hole.

FACE OF VENEER TO FACE OF BACK-UP (A)

<table>
<thead>
<tr>
<th>CATALOG #</th>
<th>A</th>
<th>B</th>
</tr>
</thead>
<tbody>
<tr>
<td>CTP-5254</td>
<td>4 1/2 – 5 1/2”</td>
<td>5 1/2”</td>
</tr>
<tr>
<td>CTP-5264</td>
<td>5 1/2 – 6 1/2”</td>
<td>6 1/2”</td>
</tr>
<tr>
<td>CTP-5274</td>
<td>6 1/2 – 7 1/2”</td>
<td>7 1/2”</td>
</tr>
<tr>
<td>CTP-5284</td>
<td>7 1/2 – 8 1/2”</td>
<td>8 1/2”</td>
</tr>
</tbody>
</table>

OTHER LENGTHS AVAILABLE UPON REQUEST

INSTALLATION PROCEDURE AND CRITERIA FOR HOLLOW BACK-UP

- Torque: 50-100 in-lbs.
- 360 Brass Expander
- 300 S.S. Hardware

INSTALLATION PROCEDURE AND CRITERIA FOR STEEL BACK-UP

- Torque: 50-100 in-lbs.
- 360 Brass Expander
- S.S. Washer
- 300 S.S. Hardware
- Spacer
Mechanical Repair Anchors for Stabilizing Veneers

Product Series of CTP Grip-Tie

CTP 5300 Series Anchor

Veneer ≥ 3”

1. Select proper anchor length based on face of veneer to face of back-up (dimension A).
2. Drill appropriate hole in mortar joint at stud location using a rotary hammer or hammer drill.
3. Drill 3/16” hole through outer wythe of material.
 - For metal stud, a 5/32” pilot hole is needed for 18, 20 and 22 gauge stud, a pilot hole of 3/16” for 16 gauge and greater is required.
 - For wood stud back-up, a pilot may not be needed, 3/16” if necessary.
4. Blow out excess drill fines.
5. Assemble threaded portion of anchor shaft to the setting tool.
 - (Hex bolt on the setting tool must be fully seated) thread anchor shaft into setting tool until it stops.
6. Insert entire assembly into drilled hole until the pointed end of the shaft makes contact with the stud, firmly thread by hand in drilled hole back-up.
7. Rotate tool clockwise and tighten back-up anchor in metal stud 20 - 50 in-lb. (50 - 100 in-lb. in 16 ga. and wood stud) remove setting tool.
8. To remove setting tool, loosen bolt head while holding setting tool firmly, spin off by hand.
9. Place outer brass shield over main body (slots facing outward) and slide over shaft until it stops against nut.
 - Place slot of tapered cone onto the setting tool tangs; Position tapered cone onto shaft and tighten 50-100 in-lbs.
10. Remove tool, patch hole.

CTP 5300R Series Anchor

Veneer ≥ 3”

1. Select proper anchor length based on face of veneer to face of back-up (dimension A).
2. Drill appropriate hole in mortar joint at stud location using a rotary hammer or hammer drill.
3. Drill 3/8” hole through outer wythe of material.
 - For metal stud, a 5/32” pilot hole is needed for 18, 20 and 22 gauge stud, a pilot hole of 3/16” for 16 gauge and greater is required.
 - For wood stud back-up, a pilot may not be needed, 3/16” if necessary.
4. Blow out excess drill fines.
5. Assemble threaded portion of anchor shaft to the 501R setting tool.
 - (Hex bolt on the setting tool must be fully seated) thread anchor shaft into setting tool until it stops.
6. Insert entire assembly into drilled hole until the pointed end of the shaft makes contact with the stud, firmly thread by hand in drilled hole back-up.
7. Rotate tool clockwise and tighten back-up anchor in metal stud 20 - 50 in-lb. (50 - 100 in-lb. in 16 ga. and wood stud) remove setting tool.
8. To remove setting tool, loosen bolt head while holding setting tool firmly, spin off by hand.
9. Place outer brass shield over main body (slots facing outward) and slide over shaft until it stops against nut.
 - Place slot of tapered cone onto the setting tool tangs; Position tapered cone onto shaft and tighten 50-100 in-lbs.
10. Remove tool, patch hole.

Installation Procedure and Criteria for Stud Back-up

Stud Back-Up (Wood or Steel)

CTP-5354
- **Catalog #**: CTP-5354
- **Length**: 4 – 5’
- **Torque to Install**: Veneer = 50-100 in-lbs.
- **Metal Stud**: 16 ga. = 3/16”
- **Wood Stud**: 18 ga. = 13/64”

CTP-5364
- **Catalog #**: CTP-5364
- **Length**: 5 – 6’
- **Torque to Install**: Veneer = 50-100 in-lbs.
- **Metal Stud**: 16 ga. = 3/16”
- **Wood Stud**: 18 ga. = 13/64”

CTP-5374
- **Catalog #**: CTP-5374
- **Length**: 6 – 7’
- **Torque to Install**: Veneer = 50-100 in-lbs.
- **Metal Stud**: 16 ga. = 3/16”
- **Wood Stud**: 18 ga. = 13/64”

CTP-5384
- **Catalog #**: CTP-5384
- **Length**: 7 – 8’
- **Torque to Install**: Veneer = 50-100 in-lbs.
- **Metal Stud**: 16 ga. = 3/16”
- **Wood Stud**: 18 ga. = 13/64”

Other Lengths Available Upon Request
PART 1 GENERAL
1.1 SECTION INCLUDES
 A. Masonry repair systems
1.2 RELATED SECTIONS
 A. Section 04900 – Masonry Restoration and Cleaning:
 Coordination and installation requirements.
1.3 REFERENCES
 A. ACI 530.1/ASCE 6/TMS – Specifications for Masonry Structures
 B. American Society for Testing and Materials (ASTM) B 16, Type 360 Brass
 C. ASTM – 580A, Type 304 S.S.
 D. BIA TEK NOTE 46
1.4 SUBMITTALS
 A. Submit under provisions of Section 01300
 B. CTP Grip-Tie: manufacturers data sheets on each product to be used,
 including:
 1. Preparation instructions and recommendations.
 2. Storage and handling requirements and recommendations.
 3. Installation methods
1.5 DELIVERY, STORAGE AND HANDLING
 A. Store products in manufacturer’s unopened packaging until ready for installation.

PART 2 PRODUCTS
2.1 MANUFACTURER
 A. Acceptable Manufacturer:
 Construction Tie Products, Inc. (CTP, Inc.),
 Michigan City, IN, 46360-9390 USA.
 Tel: 219-878-1427 Fax: 219-874-3626
 salesctp@comcast.net

2.2 PRODUCTS
 A. Masonry Repair and Restoration Re-Anchoring Existing Veneers
 (Selection based on application):
 a. 5000 Series CTP Grip-Tie Mechanical Repair Anchor
 b. 5000R Series CTP Grip-Tie Mechanical Repair Anchor
 a. 5100 Series CTP Grip-Tie Mechanical Repair Anchor
 3. Application: Masonry Veneer to Structural Steel Back-up.
 a. 5200 Series CTP Grip-Tie Mechanical Repair Anchor
 b. 5300 Series CTP Grip-Tie Mechanical Repair Anchor
 b. 5300R Series CTP Grip-Tie Mechanical Repair Anchor

PART 3 EXECUTION
3.1 PREPARATION
 A. Locate anchors in the area to be anchored per project drawings and details.

3.2 INSTALLATION
 A. Select proper anchor length by field verification.
 B. Drill proper hole size per anchor type and blow out drill fines.
 C. Using appropriate setting tool and adapters, tighten back-up anchor to recommended torque range, then tighten facade portion to the recommended torque range.
 D. Conceal anchor with specified grout or caulk.
Warning
The information contained in this publication does not constitute any professional opinion or judgement and should not be used as a substitute for competent professional determinations. Each construction project is unique and the appropriate use of this product is the responsibility of the engineers, architects, and other professionals who are familiar with the specific requirements of the project.

Approval